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ABSTRACT 

A number of  tests and estimates  for mean life and 

other parameters derived under the exponential distribution 

assumption are  studied under the alternative condition that 

the distribution has an increasing  (decreasing)   failure rate. 

The tests and estimates considered are,  for the most part, 

based on censored and truncated  samples.    It is shown that 

the usual acceptance sampling procedures based on mean  life 

generally favor the producer  (consumer)  in the IFR  (DFR) 

case.    However,  acceptance sampling procedures based on the 

q      quantlle tend to favor the consumer in the IFR case when 

q    is  small.     The usual estimates for the mean based on the 

exponential assumption are positively   (negatively)  biased 

when the distribution is IFR (DFR).     Many of these results 

hold under the weaker assumption that  the distribution has 

an increasing   (decreasing)  failure rate on the average. 



tfe.   :   ' 

'11 

BLANK PAGE 

i 

■ 

msm 



1.     INTRODUCTION 

In a fundamental paper in the literature of life testing, Epstein 
( 

and Sobel (1953) introduce life test procedures based on the exponential 

distribution.  (Soc also Epstein (1960a).) These procedures have been 

codified in a Department of Defense handbook H108 (1960) and are now 

\ 
widely employed.    If the exponential procedures are based on a complete 

• sample, the central limit law assures "robustness" for large sample 

sizes;  i.e., the risk function is not sensitive to departures from the 

exponential distribution assumption.    However,  the robustness of 

exponential procedures based on censored or truncated samples has been 

questioned.    Zelen and Dannemiller  (1961) show by using Weibull distribution 

alternatives that these procedures may not be robust in testing for mean 

life.    In particular,  they show that the use of these procedures may result 

in substantially increasing the probability of accepting items having poor 

mean lives.    Antelman and Savage in unpublished work point out that these 

exponential procedures used in testing hypotheses concerning the median 

seem to be robust.    This is not the case in testing for low or high 

percentiles.    Although the exponential statistics used in hypothesis testing 

may suffer in certain applications from lack of robustness, they do yield 

conservative tolerance and confidence limits for distributions with 

increasing failure rate in certain cases.    This is suggested by the results 

of Zelen and Dannemiller and developed in detail in Barlow and 

Proschan  (1966b) (hereafter referred to as BP (1966b).) 
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Since the usual tests and estimates based on the  exponential 

assumption possess an undeniable computational simplicity and elegance, 

perhaps a further Investigation of  their properties when the true dis- 

tribution is other than exponential is warranted.     This paper 

interprets,  in a life testing context, theoretical results concerning 

linear combinations of order statistics contained in Barlow and 

Proschan   (1966a)   (hereafter referred to as BP  (1966a)).    We consider 

statistical procedures based on an exponential distribution for a 

variety of  life testing plans.     In each case—censored sampling, 

censored sampling with replacement, or truncation—the usual estimate 

for the mean life is biased high  (low)  if the true distribution has an 

increasing  (decreasing)  failure  rate.    Properties of distributions with 

monotone failure rate are exploited to obtain bounds on the risk function 

when the usual decision rules based on an exponential assumption are used. 

Mathematical Preliminaries.     Let    X    denote a random variable with 

right  continuous distribution    F    such that    F(0 )  = 0.     If    F    has density 

f,     then    r(t)  ■ f(t)/F(t)     is known as the failure rate,where    F = 1-F. 

Note that     r(t) = ~ TT log[F(t)]    when a density exists.    For this reason, 

we say that    F    is IFR (DFR)  for increasing  (decreasing)  failure rate if 

log[F(t)]     is concave where finite  [convex on  [0,«>)).     Note that any 

IFR  (DFR)  distribution with specified mean can be expressed as the limit 

of continuous IFR (DFR)  distributions with the same mean.    Hence for many 

of our results it is sufficient  to confine attention to continuous  IFR 

(DFR)  distributions and we do this in giving proofs. 



A weaker restriction than monotonicity of the failure rate is 

also considered in some cases; namely, monotonicity of the failure rate 

1 f1 

average, - / r(u)du. This motivates the definition of IFRA (DFRA) 
t J0 

distributions. F is said to have an increasing  (decreasing) failure 

rate average,  i.e., to be IFRA (DFRA) if -log F(x)/x is increasing 

,  (decreasing). Clearly, if F is IFR (DFR), then it is IFRA (DFRA). 

The virtues of the IFRA class of distributions are discussed in 

Birnbaum, Esary and Marshall (1966). 

'     Properties of distributions with monotone failure rate are discussed 

in Barlow, Marshall and Proschan (1963) and in Barlow and Proschan (1965), 

Chapter 2.  Tables of bounds for these distributions are given in Barlow 

and Marshall (1965). Additional bounds are given in Barlow and Marshall 

(1966).  Distribution free life test sampling plans based on these bounds 

are discussed in Barlow and Gupta (1966). 

Unless otherwise indicated, we denote ordered observations from a 

random sample of size n based on a random variable X by X,  <•••< X  , i,n —     —   n,n 

and define    X        =0.    The second subscript  is dropped when there is no o,n r 

danger of  confusion.    The term increasing  (decreasing)   is used for 

nondecreasing (nonincreasing).    It will be convenient to let    G    denote 

the exponential distribution with mean,    6,     i.e. 

G(x)  =   - 
e 

x < 0 

x  >  0. 
-.■ytt - 
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We shall consider distributions F that are IFR (DFR) or 

IFRA (DFRA) with an unknown scale parameter of interest, such as 

the mean or a specified quant lie. We shall compare operating 

characteristic (OC) curves for the F distribution with corresponding 

OC curves for the exponential distribution as the scale parameter 

varies. 



2.  CENSORED SAMPLING TO ESTABLISH A SPECIFIED MEAN LIFE 

Assume n items are placed on test simultaneously and testing is 

discontinued after the r (r < n) failure. There is no replacement 

of failed items. If the distribution is exponential with density 

1 " 6 

g(x;e) = ' 

x > 0 

x < 0, 

then 

£x + (n-r)X 
1 ^^       r 

rn (1 < r < n). 

the total time on test divided by the number of failures observed, is 

the maximum likelihood ar.d minimum variance unbiased estimate for 0 

based on the first r order statistics (Epstein and Sobel (1953)). 

The following decision rule based on 6    is a uniformly most powerful 

test of the hypothesis 6 = 6n against 6 < 9- with Type I error equal 
0 0 

to a. 

rn . c(e0) = 6 2r 

accept 

reject 

(2.1) 

y-. IK '  , 
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2 
where x (2r) denotes the 100a  per cent point of a chi-square 

distribution with 2r degrees of freedom and QQ    is the mean life 

goal. Zelen and Dannemiller (1961) show that if the distribution is 

actually Weibull with increasing failure rate, then with n ■ 28, 

r « 14,  e0 ■ 1000 hours, and a ■ .10, there is a high probability 

of accepting items with a mean life considerably less than 0- ■ 1000 

hours.  This phenomenon is true in general when the distribution is 

actually IFR, as stated more precisely in 

THEOREM 2.1: If   F   is IFR (DFR) with mean    6 and   G   is 

exponential with mean    6, then 

PF{§rn l^V'8* - ^ PG{Srn lC(6o)l0} (2*2) 

for   e >_ eox
2(2r)/2(n-r+l). 

Inequality (2.2) follows from the result 

r r 
PpCECn-i+DCVX^)  lx} 1PG{S (n-l+l)(Yi-Yi_1)  >_ x} 

for x <_  (n-r+l)e and F IFR which is proved in BP (1966a), 

Corollary 5.5 and Theorem 4.6. 

For small r, the coefficient of 9- is less than 1 (e.g., if 

a <, e"1 and r Mn+l)/2,  then [x2(2r)/2(n-r+l)] ^ 1); see BP (1966b) 

For the Zelen-Dannemiller example we can assert that the probability of 
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accepting items with true mean lives as low as     rr  100% = 63% 

of the mean life goal is greater when the true distribution is IFR 

than when it is exponential.    Hence we see that  the producer's risk 

is controlled against  IFR alternatives,  but not the oonsumer's risk. 

If we keep    r    fixed and increase    n,    inequality  (2.2)   is 

strengthened. 

THEOREM 2.2:    1/   F    is IFR  (DFR) with mean    6,     then 

PF{§rn   lC(eo)ie} - ^ PF{gr.n+l iC(e0)|e} (2-3) 

for all    9 > 0. 

Inequality (2.3) is proved in BP (1966a), Theorem 5.4.  It follows 

from this result that 9    as an estimate for 6 is positively rn r J 

(negatively)  biased when    F    Is  IFR (DFR). 

COROLLARY 2.3:     If    F    is IFR with mean    0,     then 

< E^e     ]   < FUG     ^]  <i£±iH . -    F    rn      —   Fl  r,n+l    —      r (2.4) 

If F is DFR with mean 6,  then 

OiVWHE^ie (2-5) 

for    1  <  r < n. 
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All Inequalities are sharp. 

Proof.    The upper bound in (2.4) follows from the fact that 

for every sample realization 

r n 
2x.  + (n-r)Xr l£x.( 
l    x 

r      1    1 

Since equality is attained with the distribution degenerate at 6 

(which is the limit of IFR distributions) the bound is sharp. The 

other inequalities in (2.4) follow from Theorem 2.2. 

The lower bound in (2.5) is sharp as shown in Section 6 of 

BP (1966a). The other inequalities follow from Theorem 2.2. || 

Actually it can be shown under the weaker condition of F 

IFRA (DFRA) that E§   is increasing (decreasing) in r for fixed 

n and hence £6  >. (<) 6.  (See Theorem 5.3, BP (1966a).) 



3.     CENSORED SAMPLING TO ESTABLISH A SPECIFIED QUANTILE LIFE 

Suppose now that we wish to establish that  the q      quant lie, 

£;   ,    exceeds some quantile life goal,   say    E,0,    with a Type I error 

<_ a.    We consider a censored sampling plan,  as  in Section 2.     If  the 

distribution is exponential,  the decision rule is, using  (2.1)  and 

the relationship between    E,      and    6, 

e rn 

4ex2(2r) —*   accept 

c'U0) -   %a - ,,    ; (3.1) q        - 2r  S.n(l-q) 

 »   reject. 

See Epstein  (1960c).     In reliability situations we will usually be 

interested  in low percentiles;  i.e.  small values of    q.    For such 

values of    q,     the consumer rather than the produoer will be protected 

under this decision rule,  if the distribution is actually IFR.    More 

precisely,  we have 

th 
THEOREi   3.1:    If   F    is IFR  (DFR) with q      quantile    E,      and    G 

th is exponential with q      quantile    E, >     then 

V6rn iC'(9lV i V PG(§rn '- C'^V (3-2) 

when 

q a Cx?(2r) 
q   - -2n  in(l-q) 
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Inequality (3.2) follows from Theorem 4.2 of BP (1966a).  (See also 

Theorem 2.3 of BP (1966b).) Note that the coefficient of ^ is 

greater than one when q is sufficiently small; i.e., 

2 
q ^ 1 - exp[-x (2r)/2n],  so that the consumer is protected against 

accepting material not meeting the quantile life goal. 

If q is sufficiently large and decision rule (3.1) is used, 

then the producer  rather than the aonswner will be protected when the 

distribution is actually IFRA. More precisely, 

fh 
THEOREM 3.2: 1/ F    is IFRA  (DFRA) with q      quantile    £ and 

H 
th G    is exponential with q      quantile    £ , then 

PF{ern > c,(c!)Un}>(<) Pr{ern > c'a°)k }      (3.3) trn— q'q— —     Orn— q'q 

when 

Cx?(2r) 
K. >-^ q  - -2(n-r+lUn(l-q)   ' 

Inequality  (3.3)  follows from Theorem 3.4 of BP (1966a). 

(See also Theorem 3.3 of  BP  (1966b).)    The coefficient of    £0     is 
q 

2 
less than one for large q; i.e., q >_ 1 - exp[-x (2r)/2(n-r+l) ]. 

Hence for large values of q, the producer's risk is controlled but 

not the consumer's risk. 
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The analysis above points up the fact that one must be very 

careful in using exponential life tests based on censored samples. 

Depending on the objective chosen, either the producer or the 

consumer, but certainly not both simultaneously, can be protected 

if the distribution is actually IFR or DFR. 

4.  SAMPLING WITH REPLACEMENT 

Another device to save time spent on experimentation is to 

replace failed items at the time of failure with new items until the 

total number of failed items reaches a fixed number, say r. Except 

for this restriction, the sampling plan is the same as in Sections 2 

and 3. We shall see that the remarks concerning producer's and 

consumer's risks are even more applicable in this case. 

* th 
Let X  denote the time of the i  failure when failed items 

are replaced.  The maximum likelihood estimate for 6 based on the 

exponential assumption is, in this case 

i* = - [nX* + n(X* + n(X* - X*) +•••+ n(X* - X* )] 
rn  r   1    1    2   1        r   r-1 

nX*' , 
r 

(4.1) 

the total time on test divided by the number of failures observed 

(Epstein, (1960b). 
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It will be convenient  to  introduce the following fictitious 

replacement policy: 

Policy A:     Replace a failed item with a good item of  the same 

"age", 

Let    X        denote the  time of the  i      failure under this policy, 

and 

A**        I    ^ ** ** ** , ,,      v 

ern = 7 EnCXi " Xi-i) » ^r /r. (4-2) 

the total time on test divided by the number of failures observed. 

LEMMA 4.1:  If F is IFR (DFR), then 

JL JL 

?_,{§  > x} < (>) ?-,{§  > x}. (A.3) 
r rn —  — —  r rn — 

Proof. Assume F is IFR. The proof is by induction on r. 

Note that (A.3) is obviously true for r = 1 and all n >_ 1. Assume 

(4.3) is true for  r-1  and all n > r-1. Let F.  denote the 
— ±n 

distribution of X- , 
In 

Fu(x) = [F(x+u) - F(u)]/F(u) 

(the distribution of an item of age u), and 

T  = nX  + n(X -X, ) +•••+ n(X -X .  ). 
rn    In    Zn    In rn r-l,n 
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Then 

FJT      > x}  =    /  "JnX.    +•••+  (n-r+l)(X    -X    .     )  > xlnX.     = uldF.   (7) 
Frn — -^    F      In rn    r-l,n   —    '     In In n 

o ?FKr,-mUn_1 +..•+ ((„-l)-(r-l) + IXX^.^i-X,.^,,.!) ix-u)drin(-) 

n 

/  P,, {T    - > x-u}dF1   (-) ■^     F      r-l,n-l — In n' 
0      u 

n 
00 

<    f P    (T    .       > x-n}dv    (Ü). 
— Jn    F      r-l,n — In n 

0      u 
n 

The last inequality follows from Theorem 2.2. 

Also 

00 

P{Trn i Xl =   {, PFtn(X2n-Xln) +-+ «Wr-lJ ^"^In " u)dFl„0 

** 
/ ^ (T;;, _ > x-uidF^o. 
ri    F      r-l,n - 
0      u 

^ 

By the induction assumption 

P_.  {T    ,       > x-u}  <  P_ {T    .       > x-u}, 
F      r-l,n — —    F      r-l,n — 

u iL 
n n 

Hence 

00 00 

/ PF  (Tr-l.„-l i1-"'«!»^  i  ( PF 'Cl.n i X-u)dFln(n> 
0      u 

n 
0      u 

n 

which proves   (4.3). 
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An analogous proof holds in the DFR case. 

.* 
We may now show that the usual estimate 6   under censored rn 

sampling with replacement  Is stochastically larger than the corresponding 

estimate    6        under censored sampling without replacement. 

THEOREM 4.2:    If   F    is IFR  (DFR),  then 

P  {§      > x}  <   (>)  P {6*    > x}. r    rn —       —   —     r    rn — 

Proof.     Assume    F    is IFR.     By Lemma 4.1 it  is sufficient to 

show that 

P-JO      > x}   <  P_{e      > x}. (4.4) F    rn —       —   F    rn — 

To show this, consider the set of n lenewal processes generated by 

* ** 
successive failures and their replacements. Let N.(t)  (N. (t)) 

denote the number of replacements in the 1  renewal process under the 

original replacement policy (Policy A). Thus to show (4.4) we need 

only show 

Aft A 
P_{T  > x} < VAT      >  x} 
F rn —   — F rn — 

or, equivalently 

** ** 
P-JN. (x) +•••+ N (x) < r} < Pr{N1(x) +•••+ N (x) < r} 
rj. n    —   — ri n   — 
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Since life lengths in different renewal processes are independent, 

we need only show 

PF{Ni (x) ^r} 1PF{N1(x) <_r}. (4.5) 

Let    {U.} denote a renewal process with underlying distribution 
1 i=l 

00 
F,     IFR.    Let    {V  } denote a sequence of random variables where 

i=l 
V,  has distribution F, and V. given V. n has distribution 
1 x 0     1-1 

F(t+Vi_1) - F(Vi_1) 
FV IV  ^ =     f(V      )       * Vil i-1 ^ i-l; 

Then  (4.5)   is equivalent  to 

P_{N**(x)   > r} = P^fV.  +•••+ V^. < x} > ?v{ü, +•.•+ U^  < x} = P_.{N*(x)   > r} 
rl — rl r  — —    ri r  — rl — 

(4.6) 

To prove (4.6) we use indue   i on r. Clearly (4.6) is true for 

r = 1.  Suppose it Is true tor r-1. Then 

x 

P{Vn +•••+ V < x} » / P_ {V. +•••+ V . < x-u}dF(u) 
1      r —    -'_ r  i      r-i — 

0  u 

x x 

> / P_, {U, +•••+ U , < x-u}dF(u) > / P^fU. +•••+ U . < x-u}dF(u). 
— -u  r   ±       r-i — — •/_  r  1       r—i — 

0  u 0 

The first inequality follows from the Induction assumption and the 

second from the IFR property that 
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Fu(t) ^F(t) 

for all u > 0 and all t ^ 0. 

An analogous proof holds in the DFR case. | | 

A* 

An obvious consequence of Theorem 4.2 is that EG  >_ (<_) Eern >^ (<_) 6 

in the IFR (DFR) case. 

5.  TRUNCATED LIFE TEST PLANS 

A common practice in life testing is to truncate the experiment 

at a pre-assigned time, say T, and note the number of failures.  If 

the number of failures is less than or equal to an acceptance number c, 

the life length goal is considered to have been demonstrated; otherwise, 

not.  Such sampling plans have been discussed by Sobel and Tischendorf 

(1959) for the exponential case. In Barlow and Gupta (1966) such 

sampling plans are considered for IFR (DFR) distributions using known 

bounds for these distributions. It is pointed out that in the IFR case 

we have to test beyond the mean (or quantile) life goal to protect the 

consumer, whereas we can protect the producer by testing for a time less 

than the mean (or quantile) life goal.  Sampling experiments by Zelen 

and Dannemiller (1961) show that the exponential procedures will perform 

poorly when the underlying distribution is Weibull if the truncation 

time, T,  is less than the mean life goal. 

WWW i ■ mummu<m   n . 
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Bartholomew (1963) considers truncated life test plans for 

the exponential distribution where the times of failures occurring 

before T, the truncation time, are assumed known. Assuming at 

least one failure has occurred by time T,  the maximum likelihood 

estimate for the mean,  6,  is 

e(T) =7 ElT - a.(T-Y.)] 
r 1     ^^   1 

where Y. < Y0 < • • • < Y  denotes an ordered sample from an 
1 — ^ ~   — n 

exponential distribution and 

ai = 

1    if Yi ^ T 

0 otherwise. 

n 
and r = 2^ a.. The distribution of this statistic is computed in 

1 i 

Bartholomew (1963). As in the censorship case, an acceptance test 

based on this statistic will favor the producer if the true distribution 

is IFR and T is not too large. 

THEOREM 5.1: If   F    is IFR (DFR) with mean    6, T < 9, and 

G(t) = 1 -  e"t/83 then 

PF{6(T) >_ x|r >. 1} 1 (<.) PG{e(T) > x|r >_ 1} 

for all   x > 0. 

mmrmmffr: ' - «'BUBRIfr  u» 
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Proof. Assume F is IFR. Let Yi = -6 log FCX^ and let 

bi 

f 1    if Y1 <_ T 

otherwise. 

Since G(x) crosses F(x) to the right of 6 and from above 

(Barlow and Proschan (1965), Chapter 2), we see that X < T implies 

Y < T, and hence a. ^ b. •  Thus if a = 1,  then b ■ 1 and so 
n 

T-X <. T-Y . Hence if  £ a >_ 1, 
11 j^ i 

n n 
£ [T-a^T-xp]   £ [T-bi(T-Yi)] 
.1 ^„> 1 

n        —    n 

1 X 1 1 

By Lemma 1, page 73, Lehman (1959), it follows that 

PF{e(T) >_x|r >. 1} >.PG{e(T) >_x|r >_ 1} 

for all x ^ 0 and T < 6. 

A similar proof holds in the DFR case. 

Bartholomew (1957) uses the following estimate for 6 in the 

exponential case: 
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e(T) = I 

,  r 

7 E^ + (n-r)T    if r > 0 

nT if r = 0. 

Note that for r > 0,  this is the maximum likelihood estimate 

discussed above. Then 

E[6(T)] «e.^virJim> e 
l-exp(- p 

since    r    and    6(1)    are negatively correlated,  Bartholomew (1957). 

Thus the estimate is positively biased when the underlying distribution 

is  exponential.    In BP   (1966a)  it  is shown that 

Epll^i + Cn-r)T|  >_ (<.) E^J^ +  (n-r)T| 

when    F    is IFRA (DFRA);     T    is not required to be    < 6      as in 

Theorem 5.1.    This would suggest that  the estimate is even further 

biased when the underlying distribution is IFRA. 

Inverse Binomial Sampling.    Nadler  (1960)  has considered the 

following type of sampling:    An item having life distribution    F    with 

mean    9    is put on test until it fails or  time    T    has elapsed;  at  this 

time the item is replaced by a fresh item.     This is repeated sequentially 

until    r    actual failures are observed.    The number,    N,    of items that 

■■W ■ ^-! -:"-—"5B 
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have to be tested until    r    actual failures are obtained is a random 

variable.     Let    X. ,X-,...,X  ,...    denote a sequence of  independent 
12 n 

random variables with distribution    F.    Let 

Zi = 

Xi if    Xi ^ T 

otherwise, 

so that     Z,     is the time on test of the i      item.     Nadler showed that 

-x/9 when    F(x)  = 1-e        ,    a  sufficient, unbiased estimate of    9    is 

N 
e (T)   = 1  EZ., r r   ^   i 

We compare 6 (T) with related statistics in 

THEOREM 5.1: 1/ F    ie IFR  (DFR) with mean    9, then 

PF{er(T) >.x} ^ (<_) PF{err ^x} (5.1) 

for all    x > 0,    and hence 

EF[er(T)] > (<) 6. 

If,  in addition,    T < B,     then 

PF{nr(T)   >_xl   >   (<_)   PG{0r(T)  ^x) = PG{err ^x} (5.2) 

'   >" ^pp""— '   "        '     —"ji i I.IJH wm ,  m   ii.ii «.»«■i   .   —«w 



21 

for all   x >__0. 

Proof. Assume F  is IFR. Let W  denote the time between 

the (i-l)st and i  actual failure following an inverse binomial 

1 r 

sampling policy. Note that - ]£ W = 6 (T).  Then for 
r 1 1   r 

nT < x < (n+l)T, 

.n,-. 
P[W1 > x] = [F(T)]ll[F(x-nT)] >_ F(x) = P[X1 ^ x]; 

the inequality follows from the fact that F is IFR. Hence 

pFl£w1 >x] iPplEXi ix], 

proving (5.1). 

To show  (5.2),   let    Y1 = -log F(Xi).     Note that    Y1  <^Xi    if 

X.   < T < 9.     It follows  that if    N'    denotes  the number of    Y   's    which 
i — i 

must be examined to obtain    r   values each less than    T,    we see 

that    N1  < N.    Therefore,  for each sample. 

N' N 

where 

z; 

f Y, 

i T 

if    Yi ^ T 

otherwise. 

wf* y ■^"^^■*r*——-    *w .- 
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(5.2)  follows from Lemma 1, page 73 of Lehman   (1959). 

6.     BOUNDS ON ESTIMATES  FOR THE RELIABILITY FUNCTION 

In this section we obtain a lower bound for the expected value of 

two estimates of  reliability appropriate under  the exponential assumption, 

when the distribution is actually IFR.    Assume  that a censored sampling 

plan is followed,  as in Section 2. 

The minimum variance unbiased estimate for    R(t)  ■ F(t)     (t     is  fixed) 

under the exponential assumption is 

a-f-) u t< zt 
r 

R^t) = 

0 otherwise, 

where    Z    =  2J X    +  (n-r)X  ,    the total time on test.    For a discussion 
r        1 r 

of  such minimum variance unbiased estimates,   see Täte   (1959).     Then,  under 

the exponential assumption with the mean    0     taken to be    1    for 

convenience,     Z      has density 

r-le-y 
8r(y) = c^iyr • 

We obtain a lower bound  for    R^t)     in 
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THEOREM 6.1: If   F   is IFF with vean    0 - 1 and    t < 9, then 

x7' 

E[R 1-7I    s 
an 

r(y)dy + (l-t)1"1   j   gr(y)dy. 

Proof.    Let    (j)     (x) = -log F(x).     Then    $    is concave,   IncreasinR 

and    (j)(0)  = 0.     If    Y,     is the i      order  statistic  in a  sample of    n 

from an exponential distribution with mean    1,    then    X    ■ <1>(Y.)     is 

distributed as  the  i      order statistic from    F.    Furthermore, 

z    =   Z^V  +  (n-r)4)(Y  ) 
1 

1    * I EYi +  (n-r)Yr] » ^(Z*). 

Therefore, 

R^t) 

r-1 
1 - —' if    t < Z 

otherwise 

>.R1(t) _   > 

1 - t/(Kzr) 
r-l 

if    t  <  (KZr) 

otherwise. 

Since 
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<Ky) > 

y   y < 1 

I 1   y > l, 

we have 

EtRjCt)] i / [1-7]  gr(y)dy + J   (l-t)r"1grCy)dy, 

The maximum likelihood estimator for R(t) under the exponential 

assumption is 

R2(t) » exp[-t/ern] 

where 6   is defined in Section 2. Pugh (1963) has shown that under the 

exponential assumption R?(t) is negatively biased when the true 

reliability R(t) > - ~ .368. Assuming F is IFR we can obtain a lower 

bound on E[R2(t)]. 

THEOREM 6.2: If   F    is IFR with mean    0*1, then 

1   tr 

E[R (t)] > / e  y gr(y)dy + e"
tr / gr 

0 1 r 
(y)dy. 

The proof parallels that of Theorem 6.1. 

■Li^i'iiy ■ *ji*mm m * -»•—.-• ^•^«- ■* 
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